当前位置: 学院首页 > 教授 > 正文

教授

麻浩

发布人:     发布日期: 2015-12-28    浏览次数:


研究方向:作物种质资源学、品质改良和精深加工利用、种子学、耐逆分子生物学

联系方式:Lq-ncsi@njau.edu.cn

 

   博士后,教授,博士生导师。新疆维吾尔自治区天山学者特聘教授、南京农业大学教授、新疆农业大学兼职教授,内蒙古自治区荒漠生态产业院士专家工作站站长、新疆农业大学干旱区荒漠研究所副所长、新疆农业大学荒漠生态恢复与重建协同中心主任、南京农业大学-新疆农业大学荒漠生态产业研究院院长、中国作物学作物种子专业委员会副主任、中国植物学会种子科学与技术专业委员会理事,以荒漠生态治理入选2013年度南京领军型科技创业(321)重点人才。

    1985年湖南农学院农学专业毕业获农学学士学位,1988年南京农业大学农学院作物遗传育种专业毕业获农学硕士学位,1999年湖南农业大学作物栽培学与耕作学毕业获农学博士学位。2008年10月-2009年10月以访问学者身份赴加拿大Agriculture and Agri-Food Canada从事交流与研究,曾3次援疆新疆农业大学。

长期从事作物种质资源学、品质改良和精深加工利用、种子学、植物耐逆分子生物学、荒漠化生态防治等方面的研究和教学工作。

从2003年第一次援疆起,就开始从事新疆特色作物鹰嘴豆以及荒漠生态恢复和重建等方面的研发和推广应用工作,获美国和以色列发明专利授权各1项、国家发明专利和实用新型授权23项。在荒漠生态领域,在理论突破上,揭示了荒漠地区地表层高温胁迫也是导致荒漠植物幼苗成活率和保存率低的主要因子,但这一制约因素在荒漠造林过程中往往被忽视;在技术创新上,构建了“免灌溉管件防护荒漠造林新技术”,提高种植存活率达50%以上;发明的“设施防护管育苗与机械化移栽一体化荒漠造林技术”,有效地解决了国内外荒漠生态治理难以实现机械化的最后一公里问题,实现了荒漠移栽造林的机械化,移栽效率提升10倍以上;在产业提升上,牵头闯出了一条荒漠生态产业化、荒漠产业生态化的可持续发展之路,实现了荒漠生态治理的生态、经济和社会效益的有机结合。

在荒漠生态恢复和重建领域,作为第一完成人完成的教育部科技成果“提高梭梭属植物应对地表层高温胁迫的技术体系研究”,被专家一致认为具有重要研究意义和推广应用价值,成果总体上居于国际先进水平,可为我国荒漠生态恢复和重建提供理论和技术支撑,将有效推进我国荒漠区风沙治理和生态建设进程;作为第一完成人发明的美国、以色列和国家授权发明专利技术“免灌溉管件防护荒漠造林新技术”(也简称管件防护技术)已编入2015年科技部、环境保护部、住房城乡建设部和水利部“节水治污水生态修复先进适用技术指导目录”;通过产学研合作发明的“设施防护管育苗与机械化移栽一体化荒漠造林技术”2015年通过了江苏省经济和信息化委员会组织的新技术鉴定,居于国际领先水平。围绕内蒙古自治区防沙治沙以及沙产业发展需求,依托内蒙古博隆生态科技有限公司,以中国工程院院士官春云及其团队为核心,创建了由内蒙古自治区党委组织部、科技厅和科协正式批准成立自治区级“荒漠生态产业院士专家工作站”。在新技术示范推广过程中,闯出一条荒漠生态产业化、荒漠产业生态化的可持续发展之路,已经形成“荒漠生态治理模式”、“干旱区绿色矿山模式”、“种养加生态产业模式”、“枸杞生态产业模式”、“罗布麻生态纺织产业模式”、“中水回用荒漠造林循环经济产业模式”、“林纤一体化产业模式”、“林-草-养殖生态产业模式”等多种荒漠生态产业模式,新疆、内蒙等省区荒漠地区已经示范推广了10多万亩,培训技术人员、农牧民3000人次,创直接或间接经济效益20多亿元,实现了荒漠生态治理的生态、经济和社会效益的有机结合,推进了荒漠生态治理进程和沙区的精准扶贫。

在新疆特色作物鹰嘴豆研究领域,从广泛收集国内外鹰嘴豆种质资源入手,科学、系统地从其种子蛋白类型、特性、分离纯化、活性肽加工工艺,活性成分的测定和同步分离纯化方法、在种质资源和加工产品中的含量分布、功能特性,耐旱性的生理生化和分子基础以及优异种质的鉴定发掘,苗期耐旱性cDNA文库和基于EST序列的寡核苷酸芯片,重要性状基因的克隆、表达和转录激活分析、亚细胞定位、转基因功能,种子蛋白质样α-淀粉酶抑制剂的提取和分离、新类型的鉴定等方面展开深入研究,提升了我国鹰嘴豆整体基础研究水平,育出的鹰嘴豆新品种累计推广应用了23.80万亩,创经济效益2.4亿元。

在南方特色作物菜用大豆研究领域,创新菜用大豆新品种早熟优质高产配套栽培技术,使经济效益翻了3-4倍;创新多种与菜用大豆新品种轮作栽培的高效茬口技术,显著提高菜用大豆产业化生产技术水平;通过创新南方春播型菜用大豆新品种的四级种子繁育技术和南北三圃配套良繁技术体系,实现南方春播型菜用大豆良种的产业;创建新品种的“示范→繁育→推广”一体化推广模式,实现良种与良法的同步推广。系列新品种在南方地区累计应用800万亩以上,创造经济效益200多亿元。

先后主持或参与承担农业跨越计划、“863”、“973”、“十一五”国家重大支撑项目、“948”、国家自然科学基金、科技部农业科技成果转化基金等国家、省部级科研项目30多项;主编或参编教材5本,出版鹰嘴豆专著1部,参编专著1本,在国内外期刊上发表科研论文200多篇,其中SCI论文50多篇;主持或参与育成作物品种5个,参与申请大豆新品种权1个。克隆与品质、抗逆性状相关的基因近30多个;在NCBI中登录抗旱EST序列7000多条。先后获江苏省科技进步二等奖、上海市科技进步二等奖、新疆维吾尔自治区人民政府教学成果奖二等奖等省部级科研奖励9项,获“2020年度第二届发明创业奖·成果奖”二等奖;获国家级、省部级先进个人奖励6次,以及“中国产学研促进会2019年中国产学研合作创新奖个人先进”。


近期主要论著(*通讯作者):

1.   Liu SS, Liu YM*, Liu CD, Li Y, Zhang FX, Ma H*. Isolation and characterization of the GmMT-II gene and its role in response to high temperature and humidity stress in Glycine max. Plants, 2022, 11, 1503

2.  Shen YZ, Wei JP, Wang S, Zhang X, Mu KB, Liu SS, Ma H*. The copper chaperone protein gene GmATX1 promotes seed vigor and seedling tolerance under heavy metal and high temperature and humidity stresses in transgenic Arabidopsis. Plants, 2022, 11:1325

3.  Zhou YL, Wang S, Hu HM, Shen YZ, Zhu YJ, Liu XL, Wei JP, Yu XW, Liu SS, Ma H. GmCDPKSK5 interacting with GmFAD2-1B participates in regulation of seed development in soybean under high temperature and humidity stress. Plant Molecular Biology Reporter, 2022, 40, 402-417

4.  Hu HM, Qian PP, Ye MY, Mu KB, Wang S, Chen M, Ma H. GmUGT73F4 plays important roles in enhancing seed vitality and tolerance to abiotic stresses in transgenic Arabidopsis. Plant Cell, Tissue and Organ Culture, 2022, 150: 313-328

5.  Wei JP, Zhao HH, Liu XL, Liu SS, Li LZ, Ma H*. Physiological and biochemical characteristics of two soybean cultivars with different seed vigor during seed physiological maturity. Current Proteomics, 2020

6.  Liu XL, Guo LK, Wei JP, He JW, Zhang HQ, Liu AM, Xiao LT, Ma H*. Comparative transcriptome analysis reveals the mechanism of exogenous substances inhibiting fertility alteration induced by low temperature in TGMS rice line. Plant Growth Regulation, 2020(online)

7.  Shu YJ, Zhou YL, Mu KB, Hu HM, Chen M, He QY, Huang SC, Ma H*, Yu XW. A transcriptomic analysis reveals soybean seeds pre-harvest deterioration resistance pathways under high temperature and humidity stress. Gene, 2020, 63(2):115-124

8.  Wei JP, Liu XL, Li LZ, Zhao HH, Liu SS, Yu XW, Shen YZ, Zhou YL, Zhu YJ, Shu YJ, Ma H*. Quantitative proteomic, physiological and biochemical analysis of cotyledon, embryo, leaf and pod reveals the effects of high temperature and humidity stress on seed vigor formation in soybean. BMC Plant Biology, 2020, 20:127

9.  Chen M, Qian PP, Wang ZK, Shu YJ, Tao Y, Huang LY, Wang YL, Zhao HH, Ma H*. Identification and functional analysis of soybean GmSBH1 gene promoter conferring high temperature and humidity induced expression. Turkish Journal of Botany, 2019, 43:431-443

10.  Wei JP, Shen YZ, Zhao HH, Liu XL, Jia YF, Yu XW, Ma H*. GmANN, a glutathione S‑transferase‑interacting annexin, is involved in high temperature and humidity tolerance and seed vigor formation in transgenic Arabidopsis. Plant Cell, Tissue and Organ Culture, 2019, 138:583-595

11.  Liu SS, Jia YH, Zhu YJ, Zhou YL, Shen YZ, Wei JP, Liu XL, Liu YM, Gu WH, Ma H*. Soybean matrix metalloproteinase Gm2-MMP, relates to growth and development, and confers enhanced tolerance to high temperature and humidity stress in transgenic Arabidopsis. Plant Molecular Biology Reporter, 2018, 36(1):94-106

12.  Wang B, Du HH, Yao ZP, Ren C, Ma L, Wang J, Zhang H*, Ma H*. Validation of reference genes for accurate normalization of gene expression for quantitative real-time PCR in Haloxylon ammodendron during different abiotic stresses. Physiology and Molecular Biology of Plants, 2018, 24(3):455-463

13.  Tao Y, Chen M, Shu YJ, Zhu YJ, Wang S, Huang LY, Yu XW, Wang ZK, Qian PP, Gu WH, Ma H*. Identification and functional characterization of a novel BEL1-LIKE homeobox transcription factor GmBLH4 in soybean. Plant Cell, Tissue and Organ Culture, 2018, 134:331-344

14.  Wang ZK, Chen M, Zhang YQ, Huang LY, Wang S, Tao Y, Qian PP, Mijiti A, Gu AX, Zhang H, Shi SB, Cheng H, Wu Y, Xiao LT, Ma H*. A cupin domain is involved in a-amylase inhibitory activity. Plant Science, 2018, 277:285-295

15.  Liu SS, Liu YM, Jia YH, Wei JP, Wang S, Liu XL, Zhou YL, Zhu YJ, Gu WH, Ma H*. Gm1-MMP is involved in growth and development of leaf and seed, and enhances tolerance to high temperature and humidity stress in transgenic Arabidopsis. Plant Science, 2017, 259:48-61

16.  Ren C, Yu T, Qu GH, Wang S, Wang Z, Mijiti A, Zhang H, Ma L, He XL, Ma H. Haloxylon ammodendron (Amaranthaceae) fruit development delay caused by post-flowering non-inductive photoperiod. Journal of Arid Land, 2017, 9(3):408-418

17.  Wang ZK, Chen M, Zhu YJ, Qian PP, Zhou YL, Wei JP, Shen YZ, Mijiti A, Gu AX, Wang Z, Zhang H, Ma H. Isolation, identification and characterization of a new type of lectin with a-Amylase inhibitory activity in chickpea (Cicer arietinum L.). Protein & Peptide Letters, 2017, 24(11):1008-1020

18.  Shu YJ, Tao Y, Zhou YL, Chen M, Huang LY, Huang SC, Ma H. Ectopic expression of soybean GmSBH1 confers ABA sensitivity during seed germination and early seedling establishment in transgenic Arabidopsis. Pakistan Journal of Botany, 2017, 49(3):1063-1071 

19.  Wang S, Tao Y, Zhou YL, Niu J, Shu YJ, Yu XW, Liu SS, Chen M, Gu WH, Ma H*, Translationally controlled tumor protein GmTCTP interacts with GmCDPKSK5 in response to high temperature and humidity stress during soybean seed development. Plant Growth Regulation, 2017, 82:187-200

20.  Liu YM, Yu XW, Liu SS, Peng H, Mijiti A, Wang Z, Zhang H, Ma H*. A chickpea NAC-type transcription factor, CarNAC6, confers enhanced dehydration tolerance in Arabidopsis. Plant Molecular Biology Reporter, 2017,35(1):83-96

21.  Yu XW, Liu YM, Wang S. Tao Y, Wang ZK, Mijiti A, Wang Z, Zhang H, Ma H*. A chickpea stress-responsive NAC transcription factor, CarNAC5, confers enhanced tolerance to drought stress in transgenic Arabidopsis. Plant Growth Regulation, 2016, 79(2):187-197

22.  Ma H*, Wang CT, Yang B, Cheng HY, Wang Z, Mijiti A, Ren C, Qu GH, Zhang H, Ma L. CarHSFB2, a class B heat shock transcription factor, is involved in different developmental processes and various stress responses in Chickpea (Cicer Arietinum L.). Plant Molecular Biology Reporter, 2016, 34(1):1-14

23.  Yu XW, Liu YM, Wang S, Tao Y, Wang ZK, Shu YJ, Peng H, Mijiti A, Wang Z, Zhang H, Ma H*. CarNAC4, a NAC-type chickpea transcription factor conferring enhanced drought and salt stress tolerances in Arabidopsis. Plant Cell Reports, 2016,35(3):613-627

24.  Yu XW, James AT, Yang AJ*, Jones A, Mendoza-Porras O, Betrix C, Ma H, Colgrave ML. A Comparative proteomic study of drought-tolerant and drought–sensitive soybean seedlings under drought stress. Crop and Pasture Sciences, 2016, 67:528-540

25.  Ma HY, Yang RF, Song LR, Yang Y, Wang QX, Wang ZK, Ren C, Ma H*. Differential proteomic analysis of sale stress response in jute (Corchorus Capsularis & Olitorius L.) seedling roots. Pakistan Journal of Botany, 2015,47(2):385-396

26.  Song LR, Liu ZQ, Tong JH, Xiao LT, Ma H*, Zhang HQ. Comparative proteomics analysis reveals the mechanism of fertility alternation of thermo-sensitive genic male sterile rice lines under low temperature inducement. Proteomics, 2015, 15:1884-1905

27.  Tian X, Liu Y, Huang ZG, Duan HP, Tong JH, He XL, Gu WH, Ma H*, Xiao LT. Comparative proteomic analysis of seedling leaves of cold-tolerant and -sensitive spring soybean cultivars. Molecular Biology Reports, 2015,42(3):581-601

28.  Shu YJ, Tao Y, Wang S, Huang LY, Yu XW, Wang ZK, Chen M, Gu WH, Ma H*. GmSBH1, a homeobox transcription factor gene, relates to growth and development and involves in response to high temperature and humidity stress in soybean. Plant Cell Reports, 2015, 34:1927-1937

29.  Ma H*, Wang LQ, Wang S, Wei JP, Huang LY, Gu WH. Comparative proteomics analysis of developing seed of a pre-harvest seed deterioration resistant soybean cultivar under high temperature and humidity stress. Current Proteomics, 2015, 12(3):168-184

30.  Ma HY, Song LR, Huang ZG, Yang Y, Wang S, Wang ZK, Tong JH, Gu WH, Ma H*, Xiao LT. Comparative proteomic analysis reveals molecular mechanism of seedling roots of different salt tolerant soybean genotypes in responses to salinity stress. EuPA Open Proteomics, 2014, 4:40-57

31.  Yu XW, Peng H, Liu YM, Zhang Y, Shu YJ, Chen QJ, Shi SB, Ma L, Ma H*, Zhang H. CarNAC2, a novel NAC transcription factor in chickpea (Cicer arietinum L.), is associated with drought-response and various developmental processes in transgenic Arabidopsis. Journal of Plant Biology, 2014(57):55-66

32.  Yu T, Ren C, Zhang JP, He XL, Ma L, Chen QJ, Qu YY, Shi SB, Zhang H*, Ma H*. Effect of High Desert Surface Layer Temperature Stress on Haloxylon ammodendron (C. A. Mey.) Bunge. Flora, 2012, 207:572-580

33.  Wang XS, Liu Y, Jia YY, Gu HY, Ma HY, Yu T, Zhang H, Chen QJ, Ma L, Gu AX, Zhang JS, Shi SB, Ma H*. Transcriptional responses to drought stress in roots and leaves of chickpea seedlings. Molecular Biology Reports, 2012, 39:8147-8158

34.  Wang LQ, Ma H*, Song LR, Shu YJ, Gu WH. Comparative proteomics analysis reveals the mechanism of pre-harvest seed deterioration of soybean under high temperature and humidity stress. Journal of Proteomics, 2012, 75:2109-2127

35.  Ma HY, Song LR, Shu YJ, Wang S, Niu J, Wang ZK, Yu T, Gu WH, Ma H*. Comparative proteomic analysis of seedling leaves of different salt tolerant soybean genotypes. Journal of Proteomics, 2012, 75:1529-1546

36.  Jia YY, Gu HY, Wang XS, Chen QJ, Shi SB, Zhang JS, Ma L, Zhang H, Ma H*. Molecular cloning and characterization of an F-box camily gene CarF-box1 from Chickpea (Cicer arietinum L.). Molecular Biology Reports, 2012, 39:2337-2345

37.  Gu HY, Jia YY, Wang XS, Chen QJ, Shi SB, Ma L, Zhang JS, Zhang H, Ma H*. Identification and characterization of a LEA family gene CarLEA4 from chickpea (Cicer arietinum L.). Molecular Biology Reports, 2012, 39:3565-3572

38.  Ma HY, Yang RF, Wang ZK, Yu T, Jia YY, Gu HY, Ma H*. Screening of salinity tolerant jute (Corchorus capsularis) genotypes via phenotypic and phsiology-assisted procedures. Pakistan Journal of Botany, 2011, 43(6):2655-2660

39.  Peng H, Cheng HY, Yu XW, Shi QH, Zhang H, Li JG, Ma H*. Molecular analysis of an actin gene, CarACT1, from chickpea (Cicer arietinum L.). Molecular Biology Reports, 2010, 37:1081-1088

40.  Peng H, Yu XW, Cheng HY, Shi QH, Zhang H, Li JG, Ma H*. Cloning and characterization of a novel NAC family gene CarNAC1 from chickpea (Cicer arietinum L.). Molecular Biotechnology, 2010, 44(1):30-40

41Gao WR, Wang XS, Li JG, Zhang JS, Ma H*. Physicochemical and processing functional properties of proteins from two Chinese chickpea (Cicer arietinum L.) cultivars. Journal of Processing and Preservation, 2010, 34:575-594

42.  Wang XS, Gao WR, Zhang JS, Zhang H, Li JG, He XL, Ma H*. Subunit, amino acid composition and in vitro digestibility of protein isolates from Chinese kabuli and desi chickpea (Cicer arietinum L.) cultivars. Food Research International, 2010, 43:567-572

43.  Hao XY, Li JG, Shi QH, Zhang JS, He XL, Ma H*. Characterization of a novel legumin a-amylase inhibitor from chickpea (Cicer arietinum L.) seeds. Bioscience, Biotechnology, Biochemistry, 2009, 73:1-3

44.  Peng H, Cheng HY, Chen C, Yu XW, Yang JN, Gao WR, Shi QH, Zhang H, Li JG, Ma H*. A NAC transcription factor gene of Chickpea (Cicer arietinum L.), CarNAC3, is involved in drought stress response and various developmental processes. Journal of Plant Physiology, 2009, 166: 1934-1945

45.  Peng H, Cheng HY, Yu XW, Shi QH, Zhang H, Li JG, Ma H*. Characterization of a chickpea (Cicer arietinum L.) NAC family gene, CarNAC5, which is both developmentally and stress-regulated. Plant Physiology and Biochemistry, 2009, 47:1037- 1045

46.  Liu C, Wang XS, Ma H*, Zhang ZQ, Gao WR, Xiao L. Functional properties of protein isolates from soybeans stored under various conditions. Food Chemistry, 2008, 111:29-37

47.  Xiang XL, Yang LY, Hua S, Li W, Sun Y, Ma H, Zhang JS, Zeng XX. Determination of oligosaccharide contents in 19 cultivars of chickpea (Cicer arietinum L.) seeds by high performance liquid chromatography. Food Chemistry, 2008, 111:215-219

48.  Gao WR, Wang XS, Liu QY, Peng H, Chen C, Li JG, Zhang JS, Hu SN, Ma H*. Comparative analysis of ESTs in response to drought stress in chickpea (Cicer arietinum L.).  Biochemical and Biophysical Research Communications, 2008, 376:578-583

49.  Liu C, Wang HL, Cui ZM, He XL, Wang XS, Zeng XX, Ma H*. Optimization of extraction and isolation for 11S and 7S globulins of soybean seed storage protein. Food Chemistry, 2007, 102: 1310-1316