教授
杨守萍
发布人: 发布日期: 2015-12-28 浏览次数:
最高学位:博士
职称:教授,博导
办公地址:理科南楼F408
办公电话:025-84399529
电子邮箱:spyung@126.com, spyang@njau.edu.cn
研究方向:
大豆遗传育种,侧重育性生物学、杂种优势利用、功能基因组学等。
教育经历:
1990.09–1996.07 南京农业大学作物遗传育种专业硕-博连读,获博士学位
指导教师:马育华教授、盖钧镒教授
1986.09–1990.07 安徽农业技术师范学院农学专业本科,获学士学位
工作经历:
2010.12–至今 南京农业大学农学院,教授
1999.01–2010.11 南京农业大学农学院,副教授
1996.12–1998.12 南京农业大学农学系,讲师
1996.10–1996.11 南京农业大学农学系,助教
2019.04–2019.05 美国农业部-农业研究局(USDA-ARS),贝尔茨维尔农业研
究中心(BARC),大豆基因组和改良实验室,高级访问学者
讲授课程:
《生物统计学》,《生物统计与试验设计I》,《生物统计与试验设计II》
承担项目:
1、国家重点研发计划“农业生物重要性状形成与环境适应性基础研究” 专项 “农作物育性与生殖发育分子调控机制” 项目子课题(编号2022YFF1003504-007,80万,执行期限2022.12-2027.11)
2、国家种子实验室企业联合“揭榜挂帅”项目“大数据智能育种”子项目“大豆大数据智能育种技术的研究与应用”(150万,执行期限2023.01-2025.12)
3、国家重点研发计划七大农作物育种专项“大豆杂种优势利用技术与强优势杂交种创制”项目“长江中下游大豆杂种优势利用技术与强优势杂交种创制”课题(编号2016YFD0101504,975万,执行期限2016.07-2021.06)
4、国家863计划重点项目“强优势大豆杂交种的创制与应用”子课题
(编号2011AA10A105,575万,执行期限2011.01-2015.12)
5、国家863计划重点项目“强优势大豆杂交种的创制与应用”子课题
(编号2009AA101106,288万,执行期限2009.01-2010.12)
6、国家转基因重大专项“高产养分高效利用转基因大豆新品种培育”子课题
(编号2016ZX08004-005,184.25万,执行期限2016.01-2020.12)
7、国家转基因重大专项“高产养分高效利用转基因大豆新品种培育”子课题
(编号2014ZX08004-005,73.89万,执行期限2014.01-2015.12)
8、国家转基因重大专项“高产养分高效利用转基因大豆新品种培育”子课题
(编号2013ZX08004-005,43.7万,执行期限2013.01-2013.12)
9、国家转基因重大专项“高产养分高效利用转基因大豆新品种培育”子课题
(编号2011ZX08004-005,89万,执行期限2011.07-2012.12)
10、国家转基因重大专项“高产养分高效利用转基因大豆新品种培育”子课题(编号2008ZX08004-005,110万,执行期限2008.07-2010.12)
11、国家973计划项目“大豆家系品种优异亲本形成的遗传解析与利用”课题(编号2011CB109301,467万,执行期限2011.01-2015.08)
12、国家转基因重大专项“重要性状基因克隆及功能验证”子课题
(编号2008ZX08009-003,60万,执行期限2008.07-2010.12)
近期发表论文:
1、The miR156b–GmSPL2b module mediates male fertility regulation of cytoplasmic male sterility-based restorer line under high-temperature stress in soybean. Plant Biotechnology Journal, 2023, 21: 1542-1559
2、Confirmation of GmPPR576 as a fertility restorer gene of cytoplasmic male sterility in soybean. Journal of Experimental Botany, 2021, 72 : 7729-7742
3、Genotype imputation for soybean nested association mapping population to
improve precision of QTL detection. Theoretical and Applied Genetics, 2022, https://doi.org/10.1007/s00122-022-04070-7
4、A small RNA of miR2119b from soybean CMS line acts as a negative regulator of male fertility in transgenic Arabidopsis. Plant Physiology and Biochemistry, 2021, 167: 210-221
5、Comparative transcriptomics analysis and functional study reveal important role of high temperature stress response gene GmHSFA2 during flower bud development of CMS-based F1 in soybean. Frontiers in Plant Science, 2020, 11: 600217
6、Gm6PGDH1, a cytosolic 6-phosphogluconate dehydrogenase, enhanced tolerance to phosphate starvation by improving root system development and modifying the antioxidant system in soybean. Frontiers in Plant Science, 2021, 12:704983
7、Transcription factor GmWRKY46 enhanced phosphate starvation tolerance and root development in transgenic plants. Frontiers in Plant Science, 2021, 12 : 700651
8、GmWRKY45 enhances tolerance to phosphate starvation and salt stress, and changes fertility in transgenic Arabidopsis. Frontiers in Plant Science, 2020, 10:1714
9、Heat-responsive miRNAs participate in the regulation of male fertility stability in soybean CMS-based F1 under high temperature stress. International Journal of Molecular Sciences, 2021, 22 : 2446
10、Transcriptome Analysis Reveals the Genes Related to Pollen Abortion in a Cytoplasmic Male-Sterile Soybean (Glycine max (L.) Merr.). International Journal of Molecular Sciences, 2022, 23: 12227
11、Genome-wide identification and characterization of TALE superfamily genes in soybean(Glycine max L.). International Journal of Molecular Sciences, 2021, 22 : 4117
12、Metabolomics studies on cytoplasmic male sterility during flower bud development in soybean. International Journal of Molecular Sciences, 2019, 20:2869
13、Genome-wide identification of PME genes, evolution and expression analyses in soybean (Glycine max L.). BMC Plant Biology, 2021, 21 : 578
14、Genome-wide identification and characterization of GRAS genes in soybean (Glycine max). BMC Plant Biology, 2020, 20:415
15、Overexpression of GmNF-YA14 produced multiple phenotypes in soybean. Environmental and Experimental Botany, 2023, 210: 105316
16、Comparative analysis of mitochondrial genomes of soybean cytoplasmic male-sterile lines and their maintainer lines. Functional & Integrative Genomics, 2021, 21: 43-57
17、miR156b from soybean CMS line modulates floral organ development. Journal of Plant Biology, 2020, 63: 141-153
18、Exploration of miRNA-mediated fertility regulation network of cytoplasmic male sterility during flower bud development in soybean. 3 Biotech, 2019, 9: 22
19、Bacterial artificial chromosome clones randomly selected for sequencing reveal genomic differences between soybean cultivars. Crop & Pasture Science,2018,69: 131-141
20、Construction and characterization of the infectious cDNA clone of the prevalent Chinese strain SC3 of soybean mosaic virus. Phytopathology Research, 2023, 5: 9
21、Comparative analysis of circular RNAs between soybean cytoplasmic male-sterile line NJCMS1A and its maintainer NJCMS1B by high-throughput sequencing. BMC Genomics, 2018, 19: 663
22、Genome-wide analysis of DNA methylation to identify genes and pathways associated with male sterility in soybean. Molecular Breeding, 2018, 38: 118
23、Genome-wide comparative analysis of DNA methylation between soybean cytoplasmic male-sterile line NJCMS5A and its maintainer NJCMS5B. BMC Genomics, 2017, 18: 596
24、Key biological factors related to outcrossing- productivity of cytoplasmic-nuclear male-sterile lines in soybean [Glycine max (L.) Merr.]. Euphytica, 2017, 213: 266
25、Identification of miRNAs and their targets by high-throughput sequencing and degradome analysis in cytoplasmic male-sterile line NJCMS1A and its maintainer NJCMS1B of soybean. BMC Genomics, 2016, 17: 24
26、Differential proteomics analysis to identify proteins and pathways associated with male sterility of soybean using iTRAQ-based strategy. Journal of Proteomics, 2016, 138: 72–82
27、Soybean SPX1 is an important component of the response to phosphate deficiency for phosphorus homeostasis. Plant Science, 2016, 248: 82-91